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INTRODUCTION

The landscape of financial markets is characterized by turbulence, calm, crisis, and
recovery. Within this ever-shifting terrain, the idea that volatility exhibits memory to a
noticeable degree has become quite clear. Large price movements(up or down)tend to
cluster together. Periods of market turmoil are followed by continued turmoil, and periods
of tranquility are followed by continued calm. This phenomenon, known as volatility
clustering, represents the financial market's memory of past shocks. Capturing this
memory via statistics and mathematical formulas is essential for practical financial
applications.

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, introduced
by Tim Bollerslev in 1986, provides an efficient and rigorous framework for modeling this
time-varying volatility and has become the dominant family of models in the financial
industry for volatility forecasting. This paper explores the GARCH framework in depth,
explaining its mathematical structure, its advantages over traditional alternatives, its
parameter interpretation, and its practical applications in forecasting.

THE PROBLEM: HETEROSKEDASTICITY AND CLASSICAL MODELS

Traditional time series models such as ARMA and ARIMA assume that the variances of the
error terms in time series movements remain constant over time. This assumption is
known as homoskedasticity. However, financial returns exhibit heteroskedasticity, where
the variance changes systematically. More specifically, they display the type of volatility
clustering described above.

This clustering behavior violates the constant-variance homoskedasticity assumption
underlying classical statistical models. If we apply standard linear models to data exhibiting
volatility clustering, our statistical inferences would become unreliable. We need a model
that allows variance itself to be time-varying and predictable based on past information.
Indeed, before GARCH there were other popular attempts(such as EWMA and ARCH) to
capture heteroskedasticity.



NITH INVESTMENTS

TECHNOLOGY « INSIGHT « CLARITY

PREVIOUS MODELS OF HETEROSKEDASTICITY: EWMA AND ARCH

Attempts at capturing heteroskedasticity relies on the idea of conditional variance.
Caonditional variance is defined as the variance of returns at time t given all information
available up totime t — 1, and it is modeled as a time-varying quantity rather than a
constant. Thisisimportant because in essence it measures the memory of past
clustering.

Previous models of heteroskedasticity have incorporated this idea to some degree.

Exponentially Weighted Moving Average (EWMA)

Practitioners often used the Exponentially Weighted Moving Average (EWMA) model to
estimate time-varying volatility before GARCH became the industry standard. The EWMA
variance forecast is given by:

of = (1 —Nef_; +Ao7_y

where:

e o%:Current conditional variance estimate at time t. This is the EWMA volatility
being updated.

e &2 ,:Squared returninnovation(or residual)from the previous period, usually
(re—1—W)?%, representing the most recent shock to returns.

e o2 ,:Previous period's conditional variance estimate, the volatility EWMA
calculated at timet — 1.

A: Decay factor or smoothing parameter set between 0 and 1(typically
somewhere between 0.94 and 0.97), controlling how quickly older information is
down-weighted (larger A= slower decay).

While EWMA captures volatility clustering by giving more weight to recent observations, it
has significant limitations. The decay parameter A is typically fixed rather than estimated
from data, the model lacks a formal statistical foundation for hypothesis testing, and it
provides no explicit long-run variance level or mean reversion target.
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ARCH Models

Robert Engle's ARCH(g) model was the first to provide a rigorous statistical framework for
modeling conditional heteroskedasticity.

In an ARCH(g) model, the conditional variance depends on past squared returns:
Of = 0+ 0 €7y + Ap€f_, + -+ g€,
The new variables introduced in this formula are:

e : Constant term. A baseline or long-run component of the variance, required to
keep o2positive.

e q;: ARCH coefficients that weight each lagged squared shock. They must be
non-negative, and a larger a;means that the corresponding past shock has a
stronger effect on current volatility.

e q: Order of the ARCH model, indicating how many past squared shocks enter the
variance equation (how far back volatility remembers).

While ARCH represented a major breakthrough, empirical applications revealed a
significant drawback. To adequately capture the long memory in volatility observed in
financial data, very high orders(large values of gq) were often required. This resulted in

models with many parameters, leading to estimation difficulties and reduced forecasting
efficiency.
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GARCH MODEL: A PARSIMONIOUS SOLUTION OVER THE ARCH MODEL

The GARCH(1,1) Model
Ballerslev's GARCH model addressed the limitations of ARCH by incorporating lagged
conditional variances into the variance equation, creating an autoregressive moving

average structure for variance.

The standard GARCH(1,1) model is defined with:

T=ute
€; = 0,z; where z; ~ N(0,1)
0? = w+ ae_; + Boi_;
where:
e 1 Thereturnattimet.
e u: The meanreturn.
e ¢,: Theinnovation or shock, defined similarly as in the previous equations.
e oZ: The conditional variance, conditional on information available at time t — 1.
e z,.: Astandardized innovation (white noise with zero mean and unit variance).

e , a,and P are model parameters to be estimated.

Understanding the (1,1) Notation

The notation GARCH(p,qg)indicates the order of the model, where p represents the number
of lagged conditional variance terms (the GARCH terms)and q represents the number of
lagged squared error terms (the ARCH terms). Thus, GARCH(1,1) means:

e Onelagged conditional variance term: Bo?_,

e Onelagged squared error term: ae?_;
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Higher-order models such as GARCH(2,1) or GARCH(1,2) include additional lags. However,
empirical studies have shown that GARCH(1,1)is consistently effective at capturing volatility
dynamics in financial time series, often outperforming more complex specifications. This
parsimony, the ability to capture complex volatility patterns with just three parameters, is
one of GARCH's greatest strengths.

WHY GARCH IS PREFERRED OVER ALTERNATIVES
GARCH models offer several advantages over EWMA and ARCH:

e Statistical Foundation: GARCH provides a complete probabilistic
framework with formal likelihood-based estimation and hypothesis testing
capabilities, enabling rigorous model comparison and inference.

e Parsimony: GARCH(1,1)achieves what might require ARCH(20) or higher with
just three parameters, dramatically improving estimation efficiency.

e Flexibility: The separate a and 8 parameters allow independent control over
shock sensitivity and persistence, providing more realistic modeling of
actual volatility dynamics.

e Mean Reversion: GARCH naturally incorporates mean reversion to a long-
run variance level, a stylized fact observed in all financial markets.

e Forecasting Capability: GARCH provides explicit multi-period-ahead
volatility forecasts with well-defined convergence properties.
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DEEP DIVE: THE GARCH PARAMETERS IN PLAIN ENGLISH

Below is what each of the new parameters(a, B and w)introduced by GARCH captures
about market behavior.

Alpha(a): The News Coefficient or Shock Sensitivity

The parameter a captures how sensitive volatility is to recent market shocks. Specifically,
it measures how much yesterday's squared return €2_; contributes to today's expected
volatility.

Alarge a(e.g., 0.15-0.20) means that markets react strongly to new information. A large
price movement yesterday will cause a substantial increase in today's expected volatility. A
small a(e.g., 0.05)indicates that markets are relatively unresponsive to individual shocks.

The constraint a > 0 ensures that shocks always increase (never decrease) volatility,
which is intuitive since unexpected news, whether good or bad, creates uncertainty and
raises volatility.

Therefore, ais the reaction coefficient. It tells us how much today's volatility spiked in
response to yesterday's surprise. A high a means that the markets are nervous and
reactive, while a low a means that markets can take news in stride and are less jumpy.

Beta(pB): The Persistence Coefficient or Memory

The parameter B captures how of much yesterday's volatility level 62_; carries forward into
today. This is sometimes called the persistence of volatility. This is the true memory
parameter of the model.

A high B(e.g., 0.85-0.95)indicates that volatility is highly persistent. Once volatility rises, it
stays elevated for many periods. A low B(e.g., 0.50-0.70) suggests volatility shocks
dissipate quickly.

The constraint B > 0 ensures positive persistence, and the stationarity requirement o +
B < 1ensures that volatility shocks eventually decay.

In plain English, B measures stickiness or inertia in volatility. It answers the question: once
the market becomes volatile, how long does that volatility persist? High B means volatility
has along memory and low B means markets quickly forget yesterday's stress.
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Omega(w): The Baseline Volatility Component

The parameter w is a positive constant that represents the baseline component of
volatility. It is not the long-run variance itself, but rather an irreducible minimum that
ensures volatility never reaches zero. Think of w as the foundation upon which market
volatility is built. Without this positive constant, the model could theoretically produce zero
or negative variance, which is economically meaningless.

Mathematically, w must satisfy w > 0. Typical values in financial applications are very
small(e.g., 0.000002 to 0.0001).

The Interaction: How GARCH Captures Volatility Clustering

The key mechanism of GARCH lies in how acand B work together in the recursive equation:
0?2 = w+ ae_; + Boi_;

Let's trace through the mechanism step by step:

1. Initial Shock: Suppose at time t — 1 there is a large market shock,
producing a large squared return €2_;.

2. Immediate Response: Through the a term, this large shock directly
increases the variance forecast for time t and o?rises.

3. Persistence: The elevated 62 now feeds into the next period through the B
term: o7,; = w + aef + Bo?. Even if € is moderate, the large o7 keeps 62,
elevated.

4. Clustering Emerges: This process continues. High volatility today leads to
high expected volatility tomorrow, which leads to high expected volatility the
day after, and so on. This creates clusters of high volatility periods.

b. Eventually Dissipates: Because a + B < 1, the effect of the ariginal shock
gradually decays. Each period, volatility moves a bit closer to its long-run
level.

The critical insight is that the a parameter creates the immediate spike in volatility after a

shock, while the B parameter creates the prolonged elevation. This is the clustering
pattern we observe in real financial data.

10
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PERSISTENCE, MEAN REVERSION, AND LONG-RUN VARIANCE

Volatility Persistence
Thesuma + Btherefore makes up a persistence parameter and is central to
understanding GARCH dynamics. This sum measures how close the volatility process is to

arandom walk:

e Ifa+ B~ 1(e.g., 0.98-0.995) then volatility is highly persistent with very
slow mean reversion.

e Ifa+ B = 0.85 then volatility mean reverts relatively quickly.

e I[fa+ B = 1, thenthe modelexhibits no mean reversion, and the shocks
have permanent effects.

e Ifa+ B> 1 thenthe processisexplosive and non-stationary.

For the model to be covariance stationary, werequirea + 3 < 1.

Mean Reversion and the Long-Run Variance

Whena + B < 1, the GARCH process is mean-reverting, meaning volatility tends to revert
toward a long-run average level. This unconditional variance o2 (also called the long-run
variance)is given by:

)
1—a-p

0% =

This formula reveals an insightful relationship. While w anchors the equation, the actual
long-run variance level depends on all three parameters working together. The termy =
1 — a— Bissometimes called the mean reversion rate.

Example: If w = 0.000003, a = 0.12, and = 0.87, then:
e Persistence: a + B = 0.99(highly persistent)

e Meanreversionrate:y= 1 — 099 = 0.01

11



NITH INVESTMENTS
TECHNOLOGY « INSIGHT « CLARITY
e Long-runvariance: 62 = 0.000003/0.01 = 0.0003

e Long-runvolatility (standard deviation): @ = v0.0003 ~ 0.0173 or 1.73%

Half-Life of Volatility Shocks

The half-life measures how many periods it takes for volatility to revert halfway back to its
long-run level after a shock. It is calculated as:

In(0.5)
In(a + B)

Half-Life =
Example calculations:
e [fa+ B = 0.95:Half-life = 13 periods
e [fa+ B = 0.98: Half-life = 34 periods
e [fa+ B = 0.99: Half-life = 69 periods
For daily data, a persistence of 0.98 means it takes approximately 34 days for half the

effect of a volatility shock to dissipate. We can interpret this as over a month of memory is
embedded in financial volatility, so the effect of a major market event can linger for weeks

and not just days.

12
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ESTIMATING GARCH PARAMETERS VIA MAXIMUM LIKELIHOOD
GARCH parameters are typically estimated using Maximum Likelihood Estimation (MLE).

Under the assumption of normally distributed innovations where z, ~ N(0,1), the log-
likelihood function for a sample of T observations is:

£(0) = th - ——Z lln(Zn) +In(02) +

where 8 = (w, a, ) and 6% is computed recursively using the GARCH equation.

The MLE Procedure

1. Initialization: Start with an initial variance estimate (often the sample
variance or an EWMA estimate).

2. Recursive Calculation: For each observation ¢, calculate 6? = w + ae?_; +
2
Boi_1-

3. Likelihood Evaluation: Compute the log-likelihood contribution for each
observation.

4. Optimization: Use numerical optimization algorithms(e.qg., BFGS, Nelder-
Mead, L-BFGS-B)to find the parameter values that maximize the log-
likelihood, subject to constraints:w > 0,a> 0,8> 0, a+ B < 1.

Modern software packages implement these procedures efficiently, often using analytical
gradients to speed convergence.

Alternative Distributional Assumptions

While the Gaussian distribution is computationally convenient, financial returns often
exhibit fat tails. Alternative distributions commonly used include:

e Student's t-distribution: Captures heavy tails with an additional degrees-of-
freedom parameter.

e Generalized Error Distribution (GED): Provides flexible tail behavior.

13
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o Skewed distributions: Capture asymmetry in return distributions.

These are estimated using the same MLE framework with modified likelihood functions.

GARCH VARIANTS AND EXTENSIONS

The basic GARCH(1,1) model has spawned numerous extensions to capture additional
stylized facts of financial volatility.

GJR-GARCH: Capturing Asymmetric Volatility

The GJUR-GARCH model, developed by Glosten, Jagannathan, and Runkle, incorporates the
so-called leverage effect. This is the empirical observation that negative returns(bad
news)tend to increase volatility more than positive returns(good news) of the same
magnitude.

The GJR-GARCH(1,1) variance equation is:

of =w+ a€§—1 + YI[et_1<0]€§—1 + 80?—1

where I, . <7 is an indicator function that equals 1when €,._; < 0(negative shock)and 0
otherwise. The parametery captures the additional impact of negative shocks.

If y > 0, negative shocks have a total effect of (a + y) while positive shocks have effect «,
capturing the asymmetry observed in equity markets.

EGARCH: Exponential GARCH

The Exponential GARCH (EGARCH) model uses a logarithmic specification for conditional
variance, ensuring positivity without parameter constraints:

In(6?) =w+«a

ler—1l €t—1
+y—+ BIn(o7_,)
t—1 Ot—1

This specification allows for asymmetric effects through the y parameter and has different
persistence dynamics.

14
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ARCH-M: ARCH in Mean

Inthe ARCH-M(ARCH in Mean)model, the conditional variance directly enters the mean
equation, allowing risk premia to vary with volatility:

. = U+ Ao, + €
where A captures the risk-return tradeoff. This is particularly useful in asset pricing
applications where higher risk should command higher expected returns.
Other Extensions
Additional variants include:
-IGARCH: Integrated GARCH where a + B = 1, implying infinite persistence.
- TARCH (Threshold GARCH): Similar to GJR-GARCH with threshold effects.

- CGARCH (Component GARCH): Separates volatility into permanent and transitory
components.

- FIGARCH: Fractionally Integrated GARCH for long memory processes.

- Multivariate GARCH: Modeling covariance matrices for multiple assets
simultaneously.

15
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FORECASTING WITH GARCH: FROM THEORY TO PRACTICE

A key advantage of GARCH models is their ability to generate multi-period volatility

forecasts with well-defined properties.

One-Step-Ahead Forecasting

The one-step-ahead variance forecast from time t to time t + 1 is straightforward:
02, = w + ae? + Bo?

This forecast uses the most recent squared return €? and the current variance estimate
0%, both of which are known at time ¢.

Note that here, €, represents the realized innovation from the previous period (e.g., the
actual return net of the mean)rather than the theoretical decomposition 6.z, presented in
the model specification. In other words, €Z incorporates both the volatility and the
randomness that occurred at time t, and is directly observable.

Multi-Step-Ahead Forecasting

For forecasts further into the future, we use the recursive structure of GARCH. The h-step-
ahead forecast is:

G§+h =02+ (o + B)h_l[G?ﬂ - ?]

where 62 = w/(1 — a — B) is the long-run variance.

This formula reveals several important properties:
e Ash — oo, the forecast converges to the long-run variance: 62,, = 02
e Therate of convergence depends on the persistence (a + B)

e Higher persistence means slower convergence to the long-run level

16



NITH INVESTMENTS

TECHNOLOGY « INSIGHT « CLARITY

A Numerical Example

Let's work through a concrete forecasting example with actual numbers.

Given Parameters:
e = 0.000002
e a= 0.10
e B= 085
e Currentvolatility: o, = 2.0%(so 62 = 0.0004)

e Yesterdaysreturn:r, = —=1.5%(so €, = —0.015, assuming u = 0)

Step 1: Calculate long-run variance

— W 0.000002 0.000002

7 _ _ = = 0.00004
" T1-a—B 1-010-085 _ 005

Long-run volatility: ¢ = ¥0.00004 = 0.0063 or 0.63%

Step 2: One-day-ahead forecast
02, = w + ae? + Bo?
02,, = 0.000002 + 0.10 X (0.015)2 + 0.85 x 0.0004

0Z,, = 0.000002 + 0.0000225 + 0.00034 = 0.0003645

One-day-ahead volatility: 0,47, = v0.0003645 = 0.0191 or 1.91%

Step 3: Two-day-ahead forecast

For the two-day forecast, we need E.[€2,,]. Since we don't know the actual return,
we use the expected value: E.[€2,,] = 02, ;.

17
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0'?+2 =w+ O‘0?+1 + BO'§+1 =w+ (a+ B)GEH
G?Jrz = 0.000002 + 0.95 x 0.0003645
= 0.000002 + 0.00034628
= 0.00034828

Two-day-ahead volatility: 0,4, = 0.0187 or 1.87%

Step 4: Using the multi-step formula
Alternatively, we can use the closed-form formula:

62,, = 0.00004 + (0.95)"~1 x (0.0003645 — 0.00004)

Forh = 10 days:

62,10 = 0.00004 + (0.95)° x 0.0003245
= 0.00004 + 0.6302 x 0.0003245
= 0.00024457

Ten-day-ahead volatility: 64419 = 0.0156 0r 1.56%

Forh = 30days:

62,5 = 0.00004 + (0.95)2° x 0.0003245
= 0.00004 + 0.2141 x 0.0003245
= 0.00010948

Thirty-day-ahead volatility: 61430 = 0.0105 or 1.05%

18
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Some observations from this exercise:

e Thevolatility forecast starts at 1.91% (elevated due to yesterday's large
return).

e |t gradually decays toward the long-run level of 0.63%.
e The high persistence (0.95) means this decay is slow.

o After 30 days, volatility is still above the long-run level but closer to it.

Eventually, ash — oo, all forecasts converge to 0.63%.

Forecasting Returns and Prices
While GARCH directly forecasts volatility, it can be used to generate scenarios for future
returns through simulation following these steps:

1. Estimate the GARCH model on historical data to obtain ®, &, p.

2. Generate volatility forecasts using the recursive formula.

3. Simulate future returns. Draw random standardized innovations z,, ~ N(0,1)
and compute:

Tern = U+ OtpnZesn

4. Construct price paths. If Py is the current price, future prices can be simulated
as:

h
Piyp = Prexp (Z rt+i>

i=1

This Monte Carlo approach generates distributions of future returns and prices that reflect
the time-varying volatility structure captured by GARCH.

19
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WHY GARCH DOMINATES THE INDUSTRY

GARCH models have become the backbone of volatility modeling in finance for several
reasons:

e Empirical Success: GARCH(1,1) consistently provides accurate out-of-
sample volatility forecasts across asset classes, time periods, and markets.

e Parsimony: The ability to capture complex volatility dynamics with just three
parameters makes GARCH computationally efficient and reduces overfitting
risks.

e Statistical Rigor: The formal likelihood framework enables rigorous model
testing, diagnostics, and inference.

e Flexibility: The numerous GARCH variants (GJR, EGARCH, CGARCH, etc.)
allow practitioners to tailor models to specific market characteristics while
maintaining the core framework.

e Industry Adoption: GARCH is embedded in risk management systems,
requlatory frameworks (Basel accords), and trading platforms worldwide.

e Integration with Other Models: GARCH volatility estimates feed into option
pricing models, Value-at-Risk calculations, portfolio optimization, and
derivative hedging strategies.

e Captures Stylized Facts: GARCH naturally generates the key empirical
features observed in financial data: volatility clustering, mean reversion, and
leptokurtosis.

The subtitle of this paper "Capturing the Memory of Volatility in Interest Rates and Asset
Price Returns" was chosen because GARCH models are fundamentally about memory. The
B parameter explicitly models how volatility remembers its past values, while the a
parameter captures how volatility remembers past shocks. Together, they create a model
that chronicles the market's emotional memory, indicating its tendency to remain anxious
after stress and calm after tranquility.

20
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CONCLUSION

The GARCH family of models represents a successful application of econometric theory to
practical financial problems. By providing a parsimonious, statistically rigorous framework
for modeling time-varying volatility, GARCH has become indispensable for many market
practitioners.

The elegance of GARCH lies in its simplicity. The three parameters(w, a, and B) work
together to capture the persistent and mean-reverting nature of financial volatility.
Through their interaction in the recursive GARCH equation, these parameters generate the
volatility clustering phenomenon that defines financial markets.

The model's success stems not only from its theaoretical elegance but also from its
empirical performance. GARCH consistently outperforms simpler alternatives like EWMA
while remaining computationally tractable. Its extensibility to handle asymmetric effects,
regime changes, and multivariate dynamics ensures its continued relevance as markets
evolve.

As financial markets grow more complex and interconnected, the need for accurate
volatility forecasting becomes more critical. GARCH models, having captured the
memories of interest rates, equity returns, exchange rates, and commaodity prices for
nearly four decades, remain at the forefront of this challenge. They are not merely
statistical tools but rather sophisticated memory systems that distill the market's
accumulated experience into forward-looking risk assessments.
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